help  | about  | cite  | software

Publication : Increased expression of the PI3K enhancer PIKE mediates deficits in synaptic plasticity and behavior in fragile X syndrome.

First Author  Gross Christina Year  2015
Journal  Cell Rep Volume  11
Pages  727-36 PubMed ID  25921541
Abstract Text  The PI3K enhancer PIKE links PI3K catalytic subunits to group 1 metabotropic glutamate receptors (mGlu1/5) and activates PI3K signaling. The roles of PIKE in synaptic plasticity and the etiology of mental disorders are unknown. Here, we show that increased PIKE expression is a key mediator of impaired mGlu1/5-dependent neuronal plasticity in mouse and fly models of the inherited intellectual disability fragile X syndrome (FXS). Normalizing elevated PIKE protein levels in FXS mice reversed deficits in molecular and cellular plasticity and improved behavior. Notably, PIKE reduction rescued PI3K-dependent and -independent neuronal defects in FXS. We further show that PI3K signaling is increased in a fly model of FXS and that genetic reduction of the Drosophila ortholog of PIKE, CenG1A rescued excessive PI3K signaling, mushroom body defects, and impaired short-term memory in these flies. Our results demonstrate a crucial role of increased PIKE expression in exaggerated mGlu1/5 signaling causing neuronal defects in FXS. Doi  10.1016/j.celrep.2015.03.060
Issue  5 Month  May

Publication Annotations Displayer

6 Entities

22 Mesh Terms