help  | about  | cite  | software

Publication : Endophilin B is required for the Drosophila oocyte to endocytose yolk downstream of Oskar.

First Author  Tsai Yi-Cheng Year  2014
Journal  Development Volume  141
Pages  563-73 PubMed ID  24401369
Abstract Text  The nutritional environment is crucial for Drosophila oogenesis in terms of controlling hormonal conditions that regulate yolk production and the progress of vitellogenesis. Here, we discovered that Drosophila Endophilin B (D-EndoB), a member of the endophilin family, is required for yolk endocytosis as it regulates membrane dynamics in developing egg chambers. Loss of D-EndoB leads to yolk content reduction, similar to that seen in yolkless mutants, and also causes poor fecundity. In addition, mutant egg chambers exhibit an arrest at the previtellogenic stage. D-EndoB displayed a crescent localization at the oocyte posterior pole in an Oskar-dependent manner; however, it did not contribute to pole plasm assembly. D-EndoB was found to partially colocalize with Long Oskar and Yolkless at the endocytic membranes in ultrastructure analysis. Using an FM4-64 dye incorporation assay, D-EndoB was also found to promote endocytosis in the oocyte. When expressing the full-length D-endoB(FL) or D-endoB(ΔSH3) mutant transgenes in oocytes, the blockage of vitellogenesis and the defect in fecundity in D-endoB mutants was restored. By contrast, a truncated N-BAR domain of the D-EndoB only partially rescued these defects. Taken together, these results allow us to conclude that D-EndoB contributes to the endocytic activity downstream of Oskar by facilitating membrane dynamics through its N-BAR domain in the yolk uptake process, thereby leading to normal progression of vitellogenesis. Doi  10.1242/dev.097022
Issue  3 Month  Feb

Publication Annotations Displayer

31 Entities

18 Mesh Terms