help  | about  | cite  | software

Publication : The glycosyltransferase Fringe promotes Delta-Notch signaling between neurons and glia, and is required for subtype-specific glial gene expression.

First Author  Thomas Graham B Year  2007
Journal  Development Volume  134
Pages  591-600 PubMed ID  17215308
Abstract Text  The development, organization and function of central nervous systems depend on interactions between neurons and glial cells. However, the molecular signals that regulate neuron-glial communication remain elusive. In the ventral nerve cord of Drosophila, the close association of the longitudinal glia (LG) with the neuropil provides an excellent opportunity to identify and characterize neuron-glial signals in vivo. We have found that the activity and restricted expression of the glycosyltransferase Fringe (Fng) renders a subset of LG sensitive to activation of signaling through the Notch (N) receptor. This is the first report showing that modulation of N signaling by Fng is important for central nervous system development in any organism. In each hemisegment of the nerve cord the transcription factor Prospero (Pros) is selectively expressed in the six most anterior LG. Pros expression is specifically reduced in fng mutants, and is blocked by antagonism of the N pathway. The N ligand Delta (Dl), which is expressed by a subset of neurons, cooperates with Fng for N signaling in the anterior LG, leading to subtype-specific expression of Pros. Furthermore, ectopic Pros expression in posterior LG can be triggered by Fng, and by Dl derived from neurons but not glia. This effect can be mimicked by direct activation of the N pathway within glia. Our genetic studies suggest that Fng sensitizes N on glia to axon-derived Dl and that enhanced neuron-glial communication through this ligand-receptor pair is required for the proper molecular diversity of glial cell subtypes in the developing nervous system. Doi  10.1242/dev.02754
Issue  3 Month  Feb

Publication Annotations Displayer

34 Entities

18 Mesh Terms