help  | about  | cite  | software

Publication : Interspecies conservation of structure of interphotoreceptor retinoid-binding protein. Similarities and differences as adjudged by peptide mapping and N-terminal sequencing.

First Author  Redmond T M Year  1986
Journal  Biochem J Volume  240
Pages  19-26 PubMed ID  3827838
Abstract Text  Structural properties of the retinal extracellular-matrix glycolipoprotein interphotoreceptor retinoid-binding protein (IRBP) from human, monkey and bovine retinas have been compared. SDS/polyacrylamide-gel-electrophoretic analysis of limited tryptic and Staphylococcus aureus-V8-proteinase digests show virtually identical patterns for the monkey and human proteins, whereas both sets differ considerably from the bovine protein pattern. Time-course digestion shows monkey IRBP to be more readily cleaved than bovine IRBP and also cleaved to smaller fragments. Also, reversed-phase h.p.l.c. of complete tryptic digests of the IRBPs indicate that, although they have in common a similar preponderance of hydrophobic peptides, all three proteins differ extensively in their fine structure. The N-terminal sequences of monkey and bovine IRBPs have been extended beyond those presented in our previous report [Redmond, Wiggert, Robey, Nguyen, Lewis, Lee &Chader (1985) Biochemistry 24, 787-793] to over 30 residues each. The sequences yet show extensive homology, differing at only two positions, although the major monkey sequence has an additional five amino acid residues at its N-terminus ('n + 5' sequence) not observed with bovine IRBP ('n' sequence). The newly determined N-terminal sequence of human IRBP demonstrates the presence of equal amounts of the 'n' and 'n+5' sequences that are qualitatively identical with those of the monkey. The presence of the five-amino-acid-residue extension in primate, but not bovine, IRBP may indicate variation in post-translational processing. Doi  10.1042/bj2400019
Issue  1 Month  Nov

Publication Annotations Displayer

2 Entities

Trail: Publication

12 Mesh Terms

Trail: Publication