help  | about  | cite  | software

Publication : Cell death-induced regeneration in wing imaginal discs requires JNK signalling.

First Author  Bergantiños Cora Year  2010
Journal  Development Volume  137
Pages  1169-79 PubMed ID  20215351
Abstract Text  Regeneration and tissue repair allow damaged or lost body parts to be replaced. After injury or fragmentation of Drosophila imaginal discs, regeneration leads to the development of normal adult structures. This process is likely to involve a combination of cell rearrangement and compensatory proliferation. However, the detailed mechanisms underlying these processes are poorly understood. We have established a system to allow temporally restricted induction of cell death in situ. Using Gal4/Gal80 and UAS-rpr constructs, targeted ablation of a region of the disc could be performed and regeneration monitored without the requirement for microsurgical manipulation. Using a ptc-Gal4 construct to drive rpr expression in the wing disc resulted in a stripe of dead cells in the anterior compartment flanking the anteroposterior boundary, whereas a sal-Gal4 driver generated a dead domain that includes both anterior and posterior cells. Under these conditions, regenerated tissues were derived from the damaged compartment, suggesting that compartment restrictions are preserved during regeneration. Our studies reveal that during regeneration the live cells bordering the domain in which cell death was induced first display cytoskeletal reorganisation and apical-to-basal closure of the epithelium. Then, proliferation begins locally in the vicinity of the wound and later more extensively in the affected compartment. Finally, we show that regeneration of genetically ablated tissue requires JNK activity. During cell death-induced regeneration, the JNK pathway is activated at the leading edges of healing tissue and not in the apoptotic cells, and is required for the regulation of healing and regenerative growth. Doi  10.1242/dev.045559
Issue  7 Month  Apr

Publication Annotations Displayer

5 Entities

13 Mesh Terms