help  | about  | cite  | software
FlyMine: Error page
help  | about  | cite  | software

There has been an internal error while processing your request. The problem has been logged and will be investigated. You may also send us an email describing how you encountered this error.

The problem may be temporary in which case you might wish to go back and try your request again or you might want to go to the home page.





Publication : Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER.

First Author  Moore G D Year  1983
Journal  Genetics Volume  105
Pages  327-44 PubMed ID  17246163
Abstract Text  The histone genes of wild-type Drosophila melanogaster are reiterated 100-150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression. Issue  2
Month  Oct

Publication Annotations Displayer