help  | about  | cite  | software

Publication : Molecular evolutionary convergence of the flight muscle protein arthrin in Diptera and hemiptera.

First Author  Schmitz Stephan Year  2003
Journal  Mol. Biol. Evol. Volume  20
Pages  2019-33 PubMed ID  12949144
Abstract Text  Uniquely, the asynchronous flight muscle myofibrils of many insects contain arthrin, a stable 1:1 conjugate between actin and ubiquitin. The function of arthrin is still unknown. Here we survey for the presence of arthrin in 63 species of insect across nine orders using Western blotting. Analysis of the evolutionary distribution shows that arthrin has evolved a limited number of times but at least once in the Diptera and once in the Hemiptera. However, the presence of arthrin does not correlate with any observed common features of flight mechanism, natural history, or morphology. We also identify the site of the isopeptide bond in arthrin from Drosophila melanogaster (Diptera) and Lethocerus griseus (Hemiptera) using mass spectrometry. In both species, the isopeptide bond is formed between lysine 118 of the actin and the C-terminal glycine 76 of ubiquitin. Thus, not only the ubiquitination of actin but also the site of the isopeptide bond has evolved convergently in Diptera and Hemiptera. In terms of the actin monomer, lysine 118 is near neither the binding sites of the major actin-binding proteins, myosin, tropomyosin, or the troponins, nor the actin polymerization sites. However, molecular modeling supports the idea that ubiquitin bound to an actin in one F-actin strand might be able to interact with tropomyosin bound to the actin monomers of the other strand and thereby interfere with thin filament regulation. Doi  10.1093/molbev/msg212
Issue  12 Month  Dec

Publication Annotations Displayer

3 Entities

14 Mesh Terms